Regional Climate Modeling Studies for California: Future Scenarios and Impacts

Lisa C. Sloan

Department of Earth Sciences and Climate Change & Impacts Laboratory University of California Santa Cruz

California Climate Change Center, 1st Annual Conference on Climate Change

Talk Outline

- ▲ Why study climate change?
- ▲ Why study climate change at a regional scale?
- ▲ Future climate scenarios for California and their possible impacts on various systems

Why study climate change?

- ▲ Climate has changed dynamically over all of earth's history, over a range of temporal and spatial scales -- without human influence
- ▲ Climate will continue to change; what does human influence contribute?
- ▲ Climate affects all physical and biological systems (and can be affected by them)

Vostok CO₂ and Temperature Records: Past 450,000 Years

▲ Ice core records from Vostok, Antarctica reveal pCO₂ and temperature variations over the past 450,000 years

GREENHOUSE GAS CHANGES OVER the PAST 1,000 YEARS: The HUMAN FACTOR

NORTHERN HEMISPHERE TEMPERATURE CHANGE from 1961-1990 AVERAGE

ATMOSPHERIC CO₂, 1958 - PRESENT

THE NEAR FUTURE for ATMOSPHERIC CO₂?

- ▲ Estimates from the Intergovernmental Panel on Climate Change suggest that, no matter what strategies are adopted, atmospheric CO₂ concentration will reach doubled preindustrial (1850s) levels by approximately 2050
- ► HOW WILL CLIMATE CHANGE WITH THIS CO2 INCREASE?

OUR RESEARCH TOOLS: CLIMATE MODELS

- ▲ Global Climate Models (GCMs) are complex 3D computer representations of Earth's climate
- ▲ Regional Climate

 Models (RCMs) are

 complex climate models

 for limited areas, and

 are capable of greater

 spatial detail than GCMs

WHY USE REGIONAL CLIMATE MODELS?

- ▲ Regional climate models allow greater detail than is possible in global models
- ► RCM physical processes are described at more appropriate spatial scales than in GCMs

GCM (300 Km gridpt side)

RCM (40 km gridpt side)

LINKS BETWEEN GLOBAL and REGIONAL CLIMATE MODELS

FUTURE CLIMATE SCENARIOS FOR CALIFORNIA: MODEL RESULTS AND POSSIBLE IMPACTS

HOW WILL CALIFORNIA'S CLIMATE RESPOND TO A DOUBLING OF ATMOSPHERIC CO₂?

- ▲ In an initial study, we carried out two modeling studies, in which we calculated climate with $1xCO_2$ and $2xCO_2$
- ▲ Each model case was carried out for 15 years (+3 removed for spinup)
- ► We show results in terms of how different climate aspects will respond to 2xCO,

ANNUAL TEMPERATURE RESPONSE to 2xCO₂

- ▲ Average annual temperature increases everywhere in California
- ▲ Temperature increases are greatest inland

Deg C

ANNUAL PRECIPITATION RESPONSE to 2xCO₂

▲ On a yearly average basis, precipitation increases slightly in the northern third of the state and stays the same or decreases across the rest of the state

ANNUAL SNOW **ACCUMULATION RESPONSE** TO 2xCO₂

- ▲ Snowpack is reduced everywhere in the state on an annual and monthly basis
- ▲ Snowpack is reduced by as much or more than 60%

Cm water equiv

AVERAGE APRIL TEMPERATURE RESPONSE to

 $2xCO_2$

Deg C

▲ Temperature
increases everywhere
in the state, with
largest increases

- (> 10°F) in high elevation regions
- ▲ Monthly changes show much more variation than annual mean results

AVERAGE APRIL PRECIPITATION RESPONSE to

 $2xCO_2$

▲ Unlike the annual average, April precipitation decreases in the central portion of California

▲ The annual estimate is insufficient to capture the full response or to plan for future changes

CLIMATE RESPONSES to 2xCO₂ by HYDROLOGIC BASIN

Snyder et al., 2004

Summary of Temperature Results

•Hydrologic	•Annual Average	•Greatest Monthly	6
Region	Temperature	Temperature	
	Change (°C)	Change	
•South Coast	•+2.10	•+3.19 (May)	(S)
•CO River	•+2.35	•+3.33 (Sep)	
•S. Lahontan	•+2.56	•+3.96 (Feb)	
•Central Coast	•+1.92	•+2.88 (Jun)	
•Tulare Lake	•+2.38	•+3.55 (Jun)	
•San Joaquin	•+2.36	•+4.08 (Jun)	
•SF Bay	•+1.72	•+3.18 (Jun)	
•N. Lahontan	•+3.12	•+5.02 (Feb)	
•Sacramento	•+2.82	•+4.11 (Jun)	92
•North Coast	•+2.39	•+3.60 (Feb)	SC E

Sacramento River Basin Temperature Response to 2xCO₂

▲ Temperature increases are greatest in the winter, with substantial increases also occurring in the spring and summer

Sacramento River Basin Precipitation Response to 2xCO₂

- ▲ Total precipitation is reduced
- ▲ The rain season is truncated in both autumn and spring seasons

Sacramento River Basin Snow Accumulation Response to 2xCO₂

- ▲ Total snow accumulation is reduced
- The snow year is shortened substantially due to reduction of spring snowfalls

California Current upwelling response to future pCO₂ increases & climate change

- ▲ Observations suggest that wind-driven upwelling along the coast of California (western North America) has been increasing over the past 30 years
- ► Hypothesized cause for the increase is greenhouse gas forcing (leading to increased land-sea thermal contrast and intensified wind strength)

Upwelling Calculation

- ▲ Generate monthly average surface wind fields for each case
- ▲ Calculate wind stress curl (Ortiz et al., 1997)
- ➤ RegCM2.5 accurately reproduces the modern seasonality and seasonal contrast of wind stress curl along the California Current

WIND-DRIVEN UPWELLING RESPONSE

Climate Extremes: Response of Daily Temperature to 2xCO₂

2xCO₂ Max Temperature - L.A. Region

Days/yr with temperature > 95° (F) double in L. A. and quadruple in San Francisco

Terrestrial Biome Responses to 2xCO₂

- ▲ Increased CO₂ drives changes in biome distributions via both climate and physiological effects
- ▲ Mixed forests and grasslands are reduced, shrublands and evergreen forests expand with 2xCO₂

Decid. For Evrgrn. F

Mixed F.

Shrublnd

GrassInd

Desert

IMPACTS of FUTURE CLIMATE CHANGE UPON CALIFORNIA

FUTURE CLIMATE IMPACTS: CALIFORNIA WATER

- ▲ Total water availability is likely to be reduced
- ▲ Timing of water delivery will be disrupted, as snow volume and the snow year decreases and the rain season is shortened
- ▲ Storage and delivery of water throughout the state will be challenged

FUTURE CLIMATE IMPACTS: CALIFORNIA WATER

- ▲ Snowmelt runoff will decrease and will occur earlier in the spring with less flow in the summer
- ▲ Changes in duration of water year will impact aquatic biota
- ▲ Changes in runoff timing and volume will impact river, lake, and coastal marine ecosystems

FUTURE CLIMATE IMPACTS: CALIFORNIA WATER

- ▲ Increased air temperature and decreased snowmelt runoff will lead to warming of rivers and lakes
- ▲ Changes in water temperature in rivers, lakes, and oceans will impact biota

FUTURE CLIMATE IMPACTS: TERRESTRIAL SYSTEMS

- ▲ Model results indicate extreme spring and summer warming at high elevations; how will ecosystems in these regions survive such changes?
- ▲ Model results suggest major changes in temperature, rain and snow regimes; how will ecosystems adapt?

FUTURE CLIMATE IMPACTS: COASTAL SYSTEMS

- ▲ Intensified upwelling and a shift in its peak season may impact:
- coastal marine species,
- ▲ fog,
- coastal terrestrial species

FUTURE CLIMATE IMPACTS: AGRICULTURE

Agriculture may have to adapt to changing temperatures and water availability

▲ Crops may have to be adjusted

FUTURE CLIMATE IMPACTS: HEALTH and SAFETY

- ▲ Diseases that are temperature dependent may become more widespread
- ▲ Number of severely hot days will increase
- ▲ Fire potential will likely increase

This research would not be possible without the UCSC Climate Change and Impacts Laboratory and the following research team members:

Jason Bell Mark Snyder, Ph.D Noah Diffenbaugh, Ph.D

Thanks to funding from the David & Lucile Packard Foundation, NSF, UC Center for Water Resources, and UCSC STEPS

